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I. INTRODUCTION : MOLECULAR DYNAMICS (MD) 
 

● MD is a specialized discipline of Computer Simulation (CS) based on 

  Statistical Mechanics (SM) 
 
  - CS is a mathematical prediction of physical process on modern computer systems. 
      
 
  - SM studies how systems in an ensemble behave on average 
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I. INTRODUCTION : MOLECULAR DYNAMICS (MD) 
 

● AB-INITIO MD vs CLASSICAL MD 

 
 
 
 
 
 
 



II. METHODOLOGY 
 
● APPLE&P1,2 → Transferable, quantum-chemistry-based, Atomistic many-body 
                            Polarizable Potential for Liquids, Electrolytes, & Polymers force 
                            field. 
 

1 O. Borodin and G. D. Smith, J. Chem. Phys. B, 6279-6292 (2006) 
2 O. Borodin, J. Chem. Phys. B, 11463-11478 (2009) 

Bonded interactions Non-Bonded interactions 



II. METHODOLOGY 
 
● IONIC LIQUID (IL) → PYR14TFSI (PYR14FSI) doped with 0.10 mol fraction LiTFSI 
                                    (LiFSI) 
 

bis[(trifluoromethyl)sulfonyl]imide anion 
(TFSI)   

N-butyl-N-methylpyrrolidinium cation 
(PYR14) 
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II. METHODOLOGY 
 
● COMPUTATIONAL TOOLS 

SYSTEM GENERATOR CODE 

LUCRETIUS3 CODE 

POST ANALYSIS9 PACKAGE 

INITIAL CONFIGURATION 

MOLECULAR DYNAMICS (MD) SIMULATION: 
- Nosé-Hoover thermostat4 

- Anderson-Hoover barostat5 

- Multiple time step method6 

- SHAKE algorithm7 

- Ewald summation8 

- TRANSPORT PROPERTIES 
   (self-diffusion constants, shear viscosity, 
    ionic conductivity, lifetime correlation function) 
- STRUCTURAL PROPERTIES 
   (RDFs, coordination numbers, radius of gyration) 
- OTHERS 
   (MD trajectories for atoms and molecules)   

3Ayyagari, C.; Bedrov, D.; Borodin, O.; Smith, G. D. Lucretius, MD simulation code 
  http://www.eng.utah.edu/gdhsmith/lucretius.html 
4Martyna,G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 97, 2635-2643 (1992) 
5Melchionna, S.; Ciccoq, G.; Holian, B. L. Mol. Phys. 78, 533-544 (1993) 
6 Tuckerman, M. E.; Berne, B. J.; Martyna, G. J. J. Chem. Phys. 94, 6811-6815 (1991) 
7 Palmer, B. J. J. Comp. Phys. 104, 470-472 (1993) 
8  Abdulnour Y. Toukmaji and John A. Board Jr. Comp. Phys. Com. 95, 73-92 (1996) 
9 Solano, C. J. F. MD Post analysis package (UMons) 



II. METHODOLOGY 
 
● SIMULATION SCHEME 

NVT ENSEMBLE   
T = 700 K 

  t = 0.15 ns 

 
NPT ENSEMBLE 

T = 400 K P = 1 atm 
t = 0.6 ns 

 

NVT ENSEMBLE 
T = 400 K 

        t ϵ [4.0,6.0] ns 

MIX (GAS PHASE) 

OBTAIN EQUILIBRIUM DENSITY 

EQUILIBRATION+PRODUCTION RUNS 



III. RESULTS 
 
● LIQUID DENSITY 
 
  - Excellent predictive capabilities of the force field in previous simulations. 
 
  -  0.10LiTFSI-PYR14TFSI > 0.10LiFSI-PYR14FSI 



III. RESULTS 
 
● HAMILTONIAN CONSERVATION FUNCTION 
 
  - Hamiltonian is a conserved quantity for the equations of motion in NVT and NPT 
    ensembles. 
 
  -  In MD simulations, Hamiltonian conservation function allows to estimate if Hamiltonian 
     conservation is acceptable. 



III. RESULTS 
 
● STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF) 
 
  - RDF describes how the density of different type of atoms (molecules) varies as a 
    function of the distance from a reference type of atom (molecule). 
 
  - CM RDF for Li+ cation : 



III. RESULTS 
 
● STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF) 
 
   - RDF for Li+ cation and atoms belong to (T)FSI molecule : 

Peaks for rest of atoms 
belong to TFSI appear at 

distance 
in agreement to both TFSI 

geometry and first peak for O 
atoms 

Peaks for rest of atoms 
belong to FSI appear at 

distance 
in agreement to both FSI 

geometry and first peak for O 
atoms 



III. RESULTS 
 
● STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF) 
 
   - RDF for Li+ cation and O atom belongs to TFSI (FSI) molecule : 
     excellent agreement is achieved for simulations from different initial configurations.   

0.10LiTFSI-0.90PYR14TFSI 0.10LiFSI-0.90PYR14FSI 



III. RESULTS 
 
● STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF) 
 
  - RDF for Li-Li cation : 
    In a dilute solution of Li+ the relative positions of the Li+ vary strongly.   

0.10LiTFSI-0.90PYR14TFSI 0.10LiFSI-0.90PYR14FSI 



III. RESULTS 
 
● STRUCTURAL PROPERTIES : COORDINATION NUMBER 
 



III. RESULTS 
 
● SUMMARY ON THE STRUCTURAL ANALYSIS 
 
   - Taking the end of strong peak for  Li-TFSI and Li-FSI RDF into account, we find that Li cations 

       are coordinated by around 4 (T)FSI molecules in ILs mixtures. 
 

    - Defining Li-O first coordination shell by a radius lower than 3 Angs. (the end of strong peak for 

       Li-O RDF), we find that the Li cations are coordinated by around 4 O atoms. 
 

     - Li+ is bonded to four O atoms belonging to four different  (T)FSI molecules. 

 

     - These results are in agreement to previous results for similar ILs mixtures10. 

 
 

 

10 O. Borodin, G. D. Smith, and W. Henderson, J. Chem. Phys. B, 16789-16886 (2006) 



III. RESULTS 
 
● TRANSPORT PROPERTIES : SHEAR VISCOSITY 
 

   - Definition : 
 
 
 
 
 
 
 
 
 



III. RESULTS 
 
● TRANSPORT PROPERTIES : SHEAR VISCOSITY 
 
   - Implementation : 

Simpson’s rule: 

Trapezoidal rule: 



III. RESULTS 
 
● TRANSPORT PROPERTIES : SHEAR VISCOSITY 
 

   - Because stress tensor is a strong oscillation function with respect to elapsed 
     time, time integrals of this function doesn't convergence from numerical 
     integration algorithms (i.e., Trapezoidal and Simpson's rules). 
 
   - Experimental results have been obtained at MUNSTER University. 
 
   - Arrhenius model: 



III. RESULTS 
 
● TRANSPORT PROPERTIES : SHEAR VISCOSITY 
 

0.10LiTFSI-0.90PYR14TFSI 0.10LiFSI-0.90PYR14FSI 



III. RESULTS 
 
● TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS 
 
   - Definition: 
 
 
 
 
   - Implementation: 
 
 
 
 
   - Finite size correction10: 
 

10B. Dunweg and K. Kremer, J. Chem. Phys. 99, 6983-6997 (1993) 



III. RESULTS 
 
● TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS 
 
 



III. RESULTS 
 
● TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS 
 
   -  The diffusion constants were obtained from mean-square displacement by 
       fitting a straight line. 
 

 



III. RESULTS 
 
● TRANSPORT PROPERTIES : IONIC CONDUCTIVITY 
 
   - Definition: 
 

Charge transport due to self-diffusion: 

Total charge transport : 



III. RESULTS 
 
● TRANSPORT PROPERTIES : IONIC CONDUCTIVITY 
 
   - Implementation: 
 

Charge transport due to self-diffusion: 

Total charge transport : 



III. RESULTS 
 
● TRANSPORT PROPERTIES : IONIC CONDUCTIVITY 
 
   - Ionic conductivity can be estimated from charge transport due to self-diffusion and 
     degree of uncorrelated ion motion. 
 

 



III. RESULTS 
 
● SUMMARY ON THE TRANSPORT ANALYSIS 
 
   - FSC is an important contribution for self-diffusion constants. 

 

    - Li+diffusion constant : 0.10LiFSI-0.90PYR14FSI > 0.10LiTFSI-0.90PYR14TFSI. 
 

    - Ionic conductivity : 0.10LiFSI-0.90PYR14FSI > 0.10LiTFSI-0.90PYR14TFSI. 
 

 
 
 

 



III. RESULTS 
 
● MECHANISM OF THE Li+ CATION TRANSPORT 
 
   - In principle, there are two possible mechanisms of the Li+ transport: 
 
      *  Vehicular mechanism           Li+ cations move primarily with their coordination 
                                                          shells as Li[(T)FSI]4 complex. 
        *  Structure-diffusion mechanism           Li+ cations move primarily by     
                                                                          exchanging (T)FSI- molecules in their                            
                                                                          first coordination shell. 
 
   -   One way to quantify the contribution of the vehicular mechanism to the Li+   
       transport is to calculate the lifetime of the Li[(T)FSI]4 coordinations and how far the   
       Li[(T)FSI]4 complex moves before Li+ exchanges (T)FSI- anions in its first 
       coordination shell. 
 



III. RESULTS 
 
● MECHANISM OF THE Li+ CATION TRANSPORT 
 
   - Lifetime correlation function: 
     * Definition 
         



III. RESULTS 
 
● MECHANISM OF THE Li+ CATION TRANSPORT 
 
   - Lifetime correlation function: 
     * Implementation 
 
 
 
 
 
   - Residence time for lifetime correlation function (Rt): 
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   - Residence time for lifetime correlation function (Rt): 
         



III. RESULTS 
 
● MECHANISM OF THE Li+ CATION TRANSPORT 
 
   - Residence time for lifetime correlation function (Rt): 
 
 
 
 
 
 
 
 
 
   - Radius of gyration (Rg): 
       * Rg allows to estimate the size of a molecule and it can be obtained from MD simulations. 
   
       <Rg(TFSI)> = 2.60 Angs.  <Rg(FSI)>=2.00 Angs.    



III. RESULTS 
 
● MECHANISM OF THE Li+ CATION TRANSPORT 
 
   - Using self-diffusion coefficient data and residence times, we estimate that an   
     Li+ cation on average moves a distance of 1.39 (1.74) FSI- (TFSI-) diameters 
     (diameter  is defined as two radii of gyration) before it exchanges a (T)FSI- 

     anion in its first coordination shell. These numbers suggest that there is a 
     significant contribution to the Li+ transport mechanism from the structure- 
     diffusion in which Li+ cations move by exchanging (T)FSI- anions. 
 
  - These results are in agreement to previous results for similar ILs 
     mixtures10. 
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