Ionic Liquids simulations : obtention of structural and transport properties from molecular dynamics

C. J. F. Solano, D. Beljonne, R. Lazzaroni

Ionic Liquids simulations : obtention of structural and transport properties from molecular dynamics

OUTLINE

- **1.** INTRODUCTION : MOLECULAR DYNAMICS (MD)
 - ENSEMBLE AVERAGE
 - **ERGODIC HYPOTHESIS**
 - AB-INITIO MD vs CLASSICAL MD
- 2. METHODOLOGY
 - FORCE FIELD
 - > IONIC LIQUID MIXTURES
 - COMPUTATIONAL TOOLS
 - SIMULATION SCHEME
- 3. **RESULTS**
 - LIQUID DENSISTY
 - HAMILTONIAN CONSERVATION FUNCTION
 - STRUCTURAL PROPERTIES
 - **TRANSPORT PROPERTIES**
 - MECHANISM OF THE Li⁺ CATION TRANSPORT

I. INTRODUCTION : MOLECULAR DYNAMICS (MD)

MD is a specialized discipline of Computer Simulation (CS) based on Statistical Mechanics (SM)

- CS is a mathematical prediction of physical process on modern computer systems.
 ✓ Particle models → physical systems consists of discrete particles and their interactions
- SM studies how systems in an ensemble behave on average

✓ Phase space Γ → space spanned by 6N (being N number of particles) generalized positions $\mathbf{q}(t) = (\mathbf{q}_1(t), \dots, \mathbf{q}_N(t))$ and momenta $\mathbf{p}(t) = (\mathbf{p}_1(t), \dots, \mathbf{p}_N(t))$

Trajectory=evolution of system over the time

Ensemble=set of physically similar systems which led to the same values for the macroscopic state variables

I. INTRODUCTION : MOLECULAR DYNAMICS (MD)

• ENSEMBLE AVERAGE

Physical quantity

$$\langle A \rangle = \frac{\int_{\Gamma} A(\mathbf{p}, \mathbf{q}, t) f_N(\mathbf{p}, \mathbf{q}, t) d\mathbf{p} d\mathbf{q}}{\int_{\Gamma} f_N(\mathbf{p}, \mathbf{q}, t) d\mathbf{p} d\mathbf{q}}$$

Phase density $f_N(\mathbf{p}, \mathbf{q}, t)$ = probability density of the system to be found in subdomain $[\mathbf{q}, \mathbf{q} + d\mathbf{q}] \times [\mathbf{p}, \mathbf{p} + d\mathbf{p}]$

. ERGODIC HYPOTHESIS

$$\langle A
angle = ar{A}$$
 where $ar{A} = rac{1}{ au} \int_{t_0}^{t_0 + au} A\left(\Phi_{\mathbf{q},\mathbf{p},t}(t)
ight) dt$ is the time average

I. INTRODUCTION : MOLECULAR DYNAMICS (MD)

AB-INITIO MD vs CLASSICAL MD

 APPLE&P^{1,2} → Transferable, quantum-chemistry-based, Atomistic many-body Polarizable Potential for Liquids, Electrolytes, & Polymers force field.

$$U^{\text{tot}}(\mathbf{r}) = U^{\text{NB}}(\mathbf{r}) + \sum_{\text{bends}} U^{\text{BEND}}(\theta_{ijk}) + \sum_{\text{dihedrals}} U^{\text{DIHEDRAL}}(\phi_{ijkl}) + \sum_{\text{improper} \text{dihedrals}} U^{\text{IMP}}(\phi_{ijkl}^{\text{imp}})$$

Bonded interactions

$$U^{\text{BEND}}(\theta_{ijk}) = \frac{1}{2} k^{\text{BEND}}_{\alpha\beta\gamma}(\theta_{ijk} - \theta^{0}_{ijk})^{2}$$
$$U^{\text{DIHEDRAL}}(\phi_{ijkl}) = \sum_{n} \frac{1}{2} k^{\text{DIHEDRAL}}_{\alpha\beta\gamma\delta,n} [1 - \cos(n\phi_{ijkl})]$$
$$U^{\text{IMP}}(\phi^{imp}_{ijkl}) = \frac{1}{2} k^{\text{IMP}}_{\alpha\beta\gamma\delta}(\phi^{imp}_{ijkl})^{2}$$

¹O. Borodin and G. D. Smith, *J. Chem. Phys. B*, 6279-6292 (**2006**) ²O. Borodin, *J. Chem. Phys. B*, 11463-11478 (**2009**)

Non-Bonded interactions

$$U^{\text{NB}}(\mathbf{r}) = U^{\text{RD}}(\mathbf{r}) + U^{\text{coul}}(\mathbf{r}) + U^{\text{pol}}(\mathbf{r}) = \sum_{i>j} \left(A_{\alpha\beta} \exp(-B_{\alpha\beta}r_{ij}) - C_{\alpha\beta}r_{ij}^{-6} + D\left(\frac{12}{B_{\alpha\beta}}r_{ij}\right)^{12}\right) + \sum_{i>j} \left(\frac{q_iq_j}{4\pi\varepsilon_0 r_{ij}}\right) - \frac{1}{2}\sum_i \vec{\mu}_i \cdot \vec{E}_i^0$$

. IONIC LIQUID (IL) \rightarrow PYR₁₄TFSI (PYR₁₄FSI) doped with 0.10 mol fraction LiTFSI (LiFSI)

bis[(trifluoromethyl)sulfonyl]imide anion (TFSI)

bis(fluorosulfonyl)imide anion (FSI)

N-butyl-*N*-methylpyrrolidinium cation (PYR₁₄)

. COMPUTATIONAL TOOLS

³Ayyagari, C.; Bedrov, D.; Borodin, O.; Smith, G. D. Lucretius, MD simulation code http://www.eng.utah.edu/gdhsmith/lucretius.html
⁴Martyna,G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 97, 2635-2643 (1992)
⁵Melchionna, S.; Ciccoq, G.; Holian, B. L. Mol. Phys. 78, 533-544 (1993)
⁶ Tuckerman, M. E.; Berne, B. J.; Martyna, G. J. J. Chem. Phys. 94, 6811-6815 (1991)
⁷Palmer, B. J. J. Comp. Phys. 104, 470-472 (1993)
⁸ Abdulnour Y. Toukmaji and John A. Board Jr. Comp. Phys. Com. 95, 73-92 (1996)
⁹Solano, C. J. F. MD Post analysis package (UMons)

. SIMULATION SCHEME

. LIQUID DENSITY

- Excellent predictive capabilities of the force field in previous simulations.
- 0.10LiTFSI-PYR14TFSI > 0.10LiFSI-PYR14FSI

TABLE 1. Liquid density ρ for $0.10LiTFSI - 0.90PYR_{14}TFSI$. Units are Kg/m^3 .

config.	ρ
1	1358
2	1353
3	1357

TABLE 1. Liquid density ρ for $0.10LiFSI - 0.90PYR_{14}FSI$. Units are Kg/m^3 .

config.	ρ
1	1263
2	1262
3	1261

HAMILTONIAN CONSERVATION FUNCTION

- Hamiltonian is a conserved quantity for the equations of motion in NVT and NPT ensembles.
- In MD simulations, Hamiltonian conservation function allows to estimate if Hamiltonian conservation is acceptable.

$$\Delta \hat{H}(\Delta t) = \frac{1}{N} \sum_{k=1}^{N} \left| \frac{H(k\Delta t) - H(0)}{H(0)} \right|$$

TABLE 2. Hamiltonian conservation function (ΔH) for $0.10LiTFSI - 0.90PYR_{14}TFSI$.

config.	method	$ln\Delta H$
1	one step	-3.76
2	one step	-3.62
3	one step	-3.97
1	two steps	-3.73
2	two steps	-3.78

 $N\Delta t$ - Total simulation time

TABLE 2. Hamiltonian conservation function (ΔH) for $0.10LiFSI - 0.90PYR_{14}FSI$.

config.	method	$ln\Delta H$
1	one step	-5.11
2	one step	-4.62
3	one step	-5.20
1	two steps	-4.75
2	two steps	-4.68

. STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF)

- RDF describes how the density of different type of atoms (molecules) varies as a function of the distance from a reference type of atom (molecule).
- CM RDF for Li+ cation :

STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF)

- RDF for Li+ cation and atoms belong to (T)FSI molecule :

. STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF)

- RDF for Li+ cation and O atom belongs to TFSI (FSI) molecule : excellent agreement is achieved for simulations from different initial configurations.

. STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF)

- RDF for Li-Li cation :

In a dilute solution of Li+ the relative positions of the Li+ vary strongly.

0.10LiTFSI-0.90PYR14TFSI

0.10LiFSI-0.90PYR14FSI

. STRUCTURAL PROPERTIES : COORDINATION NUMBER

. SUMMARY ON THE STRUCTURAL ANALYSIS

- Taking the end of strong peak for Li-TFSI and Li-FSI RDF into account, we find that Li cations are coordinated by around 4 (T)FSI molecules in ILs mixtures.
- Defining Li-O first coordination shell by a radius lower than 3 Angs. (the end of strong peak for Li-O RDF), we find that the Li cations are coordinated by around 4 O atoms.
- Li+ is bonded to four O atoms belonging to four different (T)FSI molecules.
- These results are in agreement to previous results for similar ILs mixtures¹⁰.

¹⁰ O. Borodin, G. D. Smith, and W. Henderson, J. Chem. Phys. B, 16789-16886 (2006)

. TRANSPORT PROPERTIES : SHEAR VISCOSITY

- Definition :

$$\eta = \frac{V}{10k_BT} \sum_{\kappa\lambda = x, y, z} Q_{\kappa\lambda} \int_0^\infty \langle P_{\kappa\lambda}(t) P_{\kappa\lambda}(0) \rangle dt$$

V =volume T =temperature k_B =Boltzmann constant

 $\sum_{\kappa,\lambda=x,y,z} = \text{double sum over cartesian coordinates} \qquad Q_{\kappa\lambda} = \text{weight factor}$

 $P_{\kappa\lambda}(t)~$ =symmetrized traceless portion of stress tensor at time t

. TRANSPORT PROPERTIES : SHEAR VISCOSITY

- Implementation :

$$\eta = \lim_{t \to \infty} \eta(t) \text{ where } \eta(t) = \frac{V\Delta t}{10k_B T n N_{or}} \sum_{i=1}^{N_{or}} \left\{ \frac{2}{3} \sum_{\kappa} \left[J_{\kappa\kappa}(t;t_i) \right]^2 + \sum_{\kappa} \sum_{\lambda > \kappa} \left[J_{\kappa\lambda}(t;t_i) \right]^2 \right\}$$

 N_{tot} =total number of discrete times

 $N_{or} = rac{N_{tot}}{2}$ =number of time origins Δt =time step

Discrete times $t_i = t_0 + (i-1)\Delta t$ where $i = 1, \dots, N_{tot}$

Elapsed time $\,t=n\Delta t\,$ where $\,n=1,\ldots,N_{or}\,$

Trapezoidal rule:

$$J_{\kappa\lambda}(t;t_i) = \frac{1}{2}P_{\kappa\lambda}(t_i) + P_{\kappa\lambda}(t_i + \Delta t) + P_{\kappa\lambda}(t_i + 2\Delta t) + \dots + P_{\kappa\lambda}(t_i + (n-1)\Delta t) + \frac{1}{2}P_{\kappa\lambda}(t_i + n\Delta t)$$

Simpson's rule:

$$J_{\kappa\lambda}(t;t_i) = \frac{1}{3}P_{\kappa\lambda}(t_i) + \frac{4}{3}P_{\kappa\lambda}(t_i + \Delta t) + \frac{2}{3}P_{\kappa\lambda}(t_i + 2\Delta t) + \frac{4}{3}P_{\kappa\lambda}(t_i + 3\Delta t) + \dots + \frac{2}{3}P_{\kappa\lambda}(t_i + (n-2)\Delta t) + \frac{4}{3}P_{\kappa\lambda}(t_i + (n-1)\Delta t) + \frac{1}{3}P_{\kappa\lambda}(t_i + n\Delta t)$$

. TRANSPORT PROPERTIES : SHEAR VISCOSITY

- Because stress tensor is a strong oscillation function with respect to elapsed time, time integrals of this function doesn't convergence from numerical integration algorithms (i.e., Trapezoidal and Simpson's rules).
- Experimental results have been obtained at MUNSTER University.
- Arrhenius model:

$$ln\eta(T) = ln\eta_0 + \frac{E_a}{K_bT}$$

. TRANSPORT PROPERTIES : SHEAR VISCOSITY

0.10LiTFSI-0.90PYR14TFSI

0.10LiFSI-0.90PYR14FSI

. TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS

- Definition:

$$D_{\alpha} = \lim_{t \to \infty} \frac{1}{6t} \left\langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \left[\vec{r}_i(t) - \vec{r}_i(0) \right]^2 \right\rangle$$

 $\vec{r_i}(t)$ =cartesian vector position for i-molecule belong to $\alpha\text{-type}$ molecule at time t

- Implementation:

$$D_{\alpha} = \lim_{t \to \infty} D_{\alpha}(t) \text{ where } D_{\alpha}(t) = \frac{1}{6t} \frac{1}{N_{\alpha}N_{or}} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{or}} [\vec{r}_i(t_j+t) - \vec{r}_i(t_j)]^2$$

- Finite size correction¹⁰:

 $\Delta D = \frac{2.837 k_B T}{6 \pi \eta L} \qquad \qquad L \text{ =linear dimension of simulation periodic cell}$

¹⁰B. Dunweg and K. Kremer, *J. Chem. Phys.* **99**, 6983-6997 (1993)

TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS

Li⁺ has the smallest diffusion constant : Li⁺ ions move surrounded by their anion shell

. TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS

- The diffusion constants were obtained from mean-square displacement by fitting a straight line.

TABLE 3. Self-diffusion constants (D) for $0.10LiTFSI - 0.90PYR_{14}TFSI$. Finite Size Correction (ΔD^{FSC}) is also included. Units are $10^{-10} m^2/s$.

molec.	config.	method	D	$D + \Delta D^{FSC}$
PYR_{14}^{+}	1	one step	1.18	1.56
PYR_{14}^{+}	2	one step	1.13	1.52
PYR_{14}^+	3	one step	1.19	1.58
PYR_{14}^+	1	two steps	1.15	1.53
PYR_{14}^{+}	2	two steps	1.32	1.71
$TFSI^{-}$	1	one step	1.06	1.45
$TFSI^{-}$	2	one step	0.76	1.15
$TFSI^{-}$	3	one step	0.85	1.23
$TFSI^{-}$	1	two steps	0.82	1.20
$TFSI^{-}$	2	two steps	0.94	1.32
Li^+	1	one step	0.51	0.90
Li^+	2	one step	0.55	0.93
Li^+	3	one step	0.48	0.86
Li^+	1	two steps	0.43	0.81
Li^+	2	two steps	0.32	0.71

TABLE 3. Self-diffusion constants (D) for $0.10LiFSI - 0.90PYR_{14}FSI$. Finite Size Correction (ΔD^{FSC}) is also included. Units are $10^{-10} m^2/s$.

molec.	config.	method	D	$D + \Delta D^{FSC}$
PYR_{14}^+	1	one step	1.31	1.76
PYR_{14}^+	2	one step	1.31	1.75
PYR_{14}^+	3	one step	1.24	1.68
PYR_{14}^+	1	two steps	1.30	1.74
PYR_{14}^+	2	two steps	1.12	1.57
FSI ⁻	1	one step	1.58	2.02
FSI^-	2	one step	1.46	1.90
FSI^-	3	one step	1.61	2.06
FSI^-	1	two steps	1.44	1.87
FSI^-	2	two steps	1.35	1.80
Li ⁺	1	one step	0.90	1.34
Li^+	2	one step	0.81	1.25
Li^+	3	one step	1.04	1.49
Li^+	1	two steps	0.63	1.07
Li^+	2	two steps	0.60	1.05

. TRANSPORT PROPERTIES : IONIC CONDUCTIVITY

- Definition:

Charge transport due to self-diffusion:

$$\lambda_{uncorr} = \frac{1}{Vk_BT} \lim_{t \to \infty} \frac{1}{6t} \langle \frac{1}{N} \sum_{\alpha=1}^{N_{type}} \sum_{i=1}^{N_{\alpha}} q_{\alpha}^2 \left[\vec{r}_i(t) - \vec{r}_i(0) \right]^2 \rangle$$

 q_{α} =charge of α -type molecule

Total charge transport :

$$\lambda = \frac{1}{Vk_BT} \lim_{t \to \infty} \frac{1}{6t} \left\langle \frac{1}{N} \left\{ \sum_{\alpha=1}^{N_{type}} \sum_{i=1}^{N_{\alpha}} q_{\alpha} \left[\vec{r}_i(t) - \vec{r}_i(0) \right] \cdot \sum_{\beta=1}^{N_{type}} \sum_{j=1}^{N_{\beta}} q_{\beta} \left[\vec{r}_j(t) - \vec{r}_j(0) \right] \right\} \right\rangle$$

. TRANSPORT PROPERTIES : IONIC CONDUCTIVITY

- Implementation:

Charge transport due to self-diffusion:

$$\lambda_{uncorr} = \lim_{t \to \infty} \lambda_{uncorr}(t) \quad \text{where} \quad \lambda_{uncorr}(t) = \frac{1}{NVk_BT} \sum_{\alpha=1}^{N_{type}} q_{\alpha}^2 N_{\alpha} D_{\alpha}(t)$$

Total charge transport :

$$\lambda = \lim_{t \to \infty} \lambda(t) \text{ where } \lambda(t) = \frac{1}{6tVk_BTNN_{or}} \sum_{\alpha=1}^{N_{type}} q_{\alpha} \sum_{\beta=1}^{N_{type}} q_{\beta} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} \sum_{k=1}^{N_{or}} [\vec{r}_i(t_k+t) - \vec{r}_i(t_k)] \cdot [\vec{r}_j(t_k+t) - \vec{r}_j(t_k)]$$

. TRANSPORT PROPERTIES : IONIC CONDUCTIVITY

- Ionic conductivity can be estimated from charge transport due to self-diffusion and degree of uncorrelated ion motion.

$$\gamma_d(t) = \frac{\lambda(t)}{\lambda_{uncorr}(t)}$$

TABLE 4. Degree of uncorrelated ion motion (α_d) for $0.10LiTFSI - 0.90PYR_{14}TFSI$. Average obtained up to times 5% (2%) of the total simulation run.

config.	method	α_d
1	one step	0.56(0.55)
1	two steps	0.59(0.53)
2	one step	0.59(0.54)
2	two steps	$0.55\ (0.55)$
3	one step	0.60(0.53)
3	two steps	0.58(0.54)

 $<\lambda_{uncorr}>= 12.88 \, mS/cm$ $<\lambda>= 7.47 \, (6.96) \, mS/cm$

TABLE 4. Degree of uncorrelated ion motion (α_d) for $0.10LiFSI - 0.90PYR_{14}FSI$. Average obtained up to times 5% (2%) of the total simulation run.

config.	method	α_d
1	one step	0.60(0.55)
1	two steps	0.63(0.58)
2	one step	0.87(0.69)
2	two steps	0.67(0.60)
3	one step	0.67(0.58)

$$<\lambda_{uncorr}>=16.63 \, mS/cm$$

 $<\lambda>=11.47 \, (9.98) \, mS/cm$

. SUMMARY ON THE TRANSPORT ANALYSIS

- FSC is an important contribution for self-diffusion constants.
- Li⁺diffusion constant : 0.10LiFSI-0.90PYR14FSI > 0.10LiTFSI-0.90PYR14TFSI.
- lonic conductivity : 0.10LiFSI-0.90PYR14FSI > 0.10LiTFSI-0.90PYR14TFSI.

. MECHANISM OF THE Li⁺ CATION TRANSPORT

- In principle, there are two possible mechanisms of the Li⁺ transport:
 - * Vehicular mechanism Li⁺ cations move primarily with their coordination shells as Li[(T)FSI]₄ complex.
 * Structure-diffusion mechanism Li⁺ cations move primarily by exchanging (T)FSI⁻ molecules in their first coordination shell.
- One way to quantify the contribution of the vehicular mechanism to the Li⁺ transport is to calculate the lifetime of the Li[(T)FSI]₄ coordinations and how far the Li[(T)FSI]₄ complex moves before Li⁺ exchanges (T)FSI⁻ anions in its first coordination shell.

. MECHANISM OF THE Li⁺ CATION TRANSPORT

- Lifetime correlation function:

* Definition

$$P_{Li-(T)FSI}(t) = \frac{\langle \frac{1}{N_{Li}N_{(T)FSI}} \sum_{i=1}^{N_{Li}} \sum_{j=1}^{N_{(T)FSI}} H_{ij}(t)H_{ij}(0)\rangle}{\langle \frac{1}{N_{Li}N_{(T)FSI}} \sum_{i=1}^{N_{Li}} \sum_{j=1}^{N_{(T)FSI}} H_{ij}(0)\rangle}$$
$$H_{ij}(t) = 1 \Leftrightarrow \left| \vec{r}_i^{Li}(t) - \vec{r}_j^{(T)FSI}(t) \right| \le 5.6 \mathring{A}$$
$$H_{ij}(t) = 0 \text{ otherwise}$$

. MECHANISM OF THE Li⁺ CATION TRANSPORT

- Lifetime correlation function:
 - * Implementation

$$P_{Li-(T)FSI}(t) = \frac{\sum_{k=1}^{N_{or}} \sum_{i=1}^{N_{Li}} \sum_{j=1}^{N_{(T)FSI}} H_{ij}(t_k+t)H_{ij}(t_k)}{\sum_{k=1}^{N_{or}} \sum_{i=1}^{N_{Li}} \sum_{j=1}^{N_{(T)FSI}} H_{ij}(t_k)}$$

- Residence time for lifetime correlation function (Rt):

$$ln\left[P_{Li-(T)FSI}(t)\right] = -\frac{t}{Rt}$$

. MECHANISM OF THE Li⁺ CATION TRANSPORT

- Residence time for lifetime correlation function (Rt):

. MECHANISM OF THE Li⁺ CATION TRANSPORT

- Residence time for lifetime correlation function (Rt):

TABLE 5. Residence time (Rt) of $Li(TFSI)_4$ complex for $0.10LiTFSI - 0.90PYR_{14}TFSI$. Units are ns.

config.	method	Rt
1	one step	6.93
1	two steps	4.07
2	one step	7.91
2	two steps	4.74
3	one step	4.24

TABLE 5. Residence time (Rt) of $Li(FSI)_4$ complex for $0.10LiFSI - 0.90PYR_{14}FSI$. Units are ns.

config.	method	Rt
1	one step	2.06
1	two steps	1.68
2	one step	1.82
2	two steps	1.75
3	one step	1.67

- Radius of gyration (Rg):

* Rg allows to estimate the size of a molecule and it can be obtained from MD simulations.

<Rg(TFSI)> = 2.60 Angs. <Rg(FSI)>=2.00 Angs.

. MECHANISM OF THE Li⁺ CATION TRANSPORT

- Using self-diffusion coefficient data and residence times, we estimate that an Li⁺ cation on average moves a distance of 1.39 (1.74) FSI⁻ (TFSI⁻) diameters (diameter is defined as two radii of gyration) before it exchanges a (T)FSI⁻ anion in its first coordination shell. These numbers suggest that there is a significant contribution to the Li⁺ transport mechanism from the structure-diffusion in which Li⁺ cations move by exchanging (T)FSI⁻ anions.

- These results are in agreement to previous results for similar ILs mixtures¹⁰.

THANK YOU FOR YOUR ATTENTION!