Ionic Liquids simulations : obtention of structural and transport properties from molecular dynamics

C. J. F. Solano, D. Beljonne, R. Lazzaroni

Ionic Liquids simulations : obtention of structural and transport properties from molecular dynamics

OUTLINE

- **1. INTRODUCTION : MOLECULAR DYNAMICS (MD)**
	- \triangleright FNSEMBLE AVERAGE
	- \triangleright FRGODIC HYPOTHESIS
	- \triangleright AB-INITIO MD vs CLASSICAL MD
- **2. METHODOLOGY**
	- \triangleright FORCE FIFID
	- \triangleright IONIC LIQUID MIXTURES
	- \triangleright COMPUTATIONAL TOOLS
	- \triangleright SIMULATION SCHEME
- 3. **RESULTS**
	- \triangleright LIQUID DENSISTY
	- \triangleright HAMILTONIAN CONSERVATION FUNCTION
	- \triangleright STRUCTURAL PROPERTIES
	- **EXAMPLE TRANSPORT PROPERTIES**
	- **EXAMPLE THE LIT CATION TRANSPORT**

I. INTRODUCTION : MOLECULAR DYNAMICS (MD)

● **MD is a specialized discipline of Computer Simulation (CS) based on Statistical Mechanics (SM)**

- CS is a mathematical prediction of physical process on modern computer systems. $\sqrt{\frac{P}}$ Particle models \rightarrow physical systems consists of discrete particles and their interactions
- SM studies how systems in an ensemble behave on average

✔ Phase space $\Gamma \rightarrow$ space spanned by 6N (being N number of particles) generalized positions $\mathbf{q}(t) = (\mathbf{q}_1(t), \dots, \mathbf{q}_N(t))$ and momenta $\mathbf{p}(t) = (\mathbf{p}_1(t), \dots, \mathbf{p}_N(t))$

Trajectory=evolution of system over the time

Ensemble=set of physically similar systems which led to the same values for the macroscopic state variables

I. INTRODUCTION : MOLECULAR DYNAMICS (MD)

● **ENSEMBLE AVERAGE**

Physical quantity

$$
\langle A \rangle = \frac{\int_{\Gamma} A(\mathbf{p}, \mathbf{q}, t) f_N(\mathbf{p}, \mathbf{q}, t) d\mathbf{p} d\mathbf{q}}{\int_{\Gamma} f_N(\mathbf{p}, \mathbf{q}, t) d\mathbf{p} d\mathbf{q}}
$$

Phase density $f_N(\mathbf{p}, \mathbf{q}, t)$ = probability density of the system to be found in
subdomain $[\mathbf{q}, \mathbf{q} + d\mathbf{q}] \times [\mathbf{p}, \mathbf{p} + d\mathbf{p}]$

● **ERGODIC HYPOTHESIS**

$$
\langle A \rangle = \bar{A} \quad \text{where} \quad \bar{A} = \frac{1}{\tau} \int_{t_0}^{t_0 + \tau} A \left(\Phi_{\mathbf{q}, \mathbf{p}, t}(t) \right) dt \quad \text{is the time average}
$$

I. INTRODUCTION : MOLECULAR DYNAMICS (MD)

● **AB-INITIO MD vs CLASSICAL MD**

• **APPLE&P^{1,2}** → Transferable, quantum-chemistry-based, Atomistic many-body Polarizable Potential for Liquids, Electrolytes, & Polymers force field.

$$
U^{\text{tot}}(\mathbf{r}) = U^{\text{NB}}(\mathbf{r}) + \sum_{\text{bends}} U^{\text{BEND}}(\theta_{ijk}) + \sum_{\text{dihedrals}} U^{\text{DIHEDRAL}}(\phi_{ijkl}) + \sum_{\text{improper}} U^{\text{IMP}}(\phi_{ijkl}^{\text{imp}})
$$

$$
U^{\text{BEND}}(\theta_{ijk}) = \frac{1}{2} k_{\alpha\beta\gamma}^{\text{BEND}} (\theta_{ijk} - \theta_{ijk}^0)^2
$$

$$
U^{\text{DIHEDRAL}}(\phi_{ijkl}) = \sum_{n} \frac{1}{2} k_{\alpha\beta\gamma\delta,n}^{\text{DIHEDRAL}} [1 - \cos(n\phi_{ijkl})]
$$

$$
U^{\text{IMP}}(\phi_{ijkl}^{imp}) = \frac{1}{2} k_{\alpha\beta\gamma\delta}^{\text{IMP}} (\phi_{ijkl}^{imp})^2
$$

¹ O. Borodin and G. D. Smith, *J. Chem. Phys. B,* 6279-6292 (**2006**) **²**O. Borodin, *J. Chem. Phys. B,* 11463-11478 (**2009**)

Bonded interactions Non-Bonded interactions

$$
U^{\text{NB}}(\mathbf{r}) = U^{\text{RD}}(\mathbf{r}) + U^{\text{coul}}(\mathbf{r}) + U^{\text{pol}}(\mathbf{r}) =
$$

$$
\sum_{i>j} \left(A_{\alpha\beta} \exp(-B_{\alpha\beta}r_{ij}) - C_{\alpha\beta}r_{ij}^{-6} + D\left(\frac{12}{B_{\alpha\beta}r_{ij}}\right)^{12}\right) +
$$

$$
\sum_{i>j} \left(\frac{q_iq_j}{4\pi\varepsilon_0r_{ij}} \right) - \frac{1}{2} \sum_{i} \vec{\mu}_i \cdot \vec{E}_i^0
$$

. IONIC LIQUID (IL) \rightarrow PYR₁₄TFSI (PYR₁₄FSI) doped with 0.10 mol fraction LiTFSI (LiFSI)

bis[(trifluoromethyl)sulfonyl]imide anion (TFSI)

bis(fluorosulfonyl)imide anion (FSI)

*N***-butyl-***N***-methylpyrrolidinium cation (PYR14)**

● **COMPUTATIONAL TOOLS**

Ayyagari, C.; Bedrov, D.; Borodin, O.; Smith, G. D. *Lucretius, MD simulation code* http://www.eng.utah.edu/gdhsmith/lucretius.html Martyna,G. J.; Klein, M. L.; Tuckerman, M. *J. Chem. Phys.* **97**, 2635-2643 (1992) Melchionna, S.; Ciccoq, G.; Holian, B. L. *Mol. Phys.* **78**, 533-544 (1993) Tuckerman, M. E.; Berne, B. J.; Martyna, G. J. *J. Chem. Phys.* **94**, 6811-6815 (1991) Palmer, B. J. *J. Comp. Phys*. **104**, 470-472 (1993) Abdulnour Y. Toukmaji and John A. Board Jr. *Comp. Phys. Com.* **95**, 73-92 (1996) Solano, C. J. F. *MD Post analysis package* (UMons)

● **SIMULATION SCHEME**

● **LIQUID DENSITY**

- Excellent predictive capabilities of the force field in previous simulations.

- 0.10LiTFSI-PYR14TFSI > 0.10LiFSI-PYR14FSI

TABLE 1. Liquid density ρ for $0.10LiTFSI - 0.90PYR_{14}TFSI$. Units are Kg/m^3 .

TABLE 1. Liquid density ρ for $0.10LiFSI - 0.90PYR_{14}FSI$. Units are Kg/m^3 .

● **HAMILTONIAN CONSERVATION FUNCTION**

- Hamiltonian is a conserved quantity for the equations of motion in NVT and NPT ensembles.
- In MD simulations, Hamiltonian conservation function allows to estimate if Hamiltonian conservation is acceptable.

$$
\Delta \hat{H}(\Delta t) = \frac{1}{N} \sum_{k=1}^{N} \left| \frac{H(k\Delta t) - H(0)}{H(0)} \right|
$$

2. Hamiltonian conservation function **TABLE** (ΔH) for $0.10LiTFSI - 0.90PYR₁₄TFSI.$

config.	method	$ln\Delta H$
	one step	$-3.76\,$
2	one step	-3.62
3	one step	-3.97
1	two steps	$-3.73\,$
9	two steps	-3.78

 $N\Lambda t \rightarrow$ Total simulation time

TABLE 2. Hamiltonian conservation function (ΔH) for $0.10LiFSI - 0.90PYR_{14}FSI.$

config.	method	$ln\Delta H$
	one step	-5.11
	one step	$-4.62\,$
3	one step	-5.20
	two steps	-4.75
	two steps	-4.68

● **STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF)**

- RDF describes how the density of different type of atoms (molecules) varies as a function of the distance from a reference type of atom (molecule).
- CM RDF for Li+ cation :

● **STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF)**

- RDF for Li+ cation and atoms belong to (T)FSI molecule :

● **STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF)**

- RDF for Li+ cation and O atom belongs to TFSI (FSI) molecule : excellent agreement is achieved for simulations from different initial configurations.

● **STRUCTURAL PROPERTIES : RADIAL DISTRIBUTION FUNCTIONS (RDF)**

- RDF for Li-Li cation :

In a dilute solution of Li+ the relative positions of the Li+ vary strongly.

● **STRUCTURAL PROPERTIES : COORDINATION NUMBER**

● **SUMMARY ON THE STRUCTURAL ANALYSIS**

- Taking the end of strong peak for Li-TFSI and Li-FSI RDF into account, we find that Li cations are coordinated by around 4 (T)FSI molecules in ILs mixtures.
- Defining Li-O first coordination shell by a radius lower than 3 Angs. (the end of strong peak for Li-O RDF), we find that the Li cations are coordinated by around 4 O atoms.
- **Li+ is bonded to four O atoms belonging to four different (T)FSI molecules.**
- These results are in agreement to previous results for similar ILs mixtures¹⁰.

¹⁰ O. Borodin, G. D. Smith, and W. Henderson, *J. Chem. Phys. B,* 16789-16886 (**2006**)

● **TRANSPORT PROPERTIES : SHEAR VISCOSITY**

- Definition :

$$
\eta = \frac{V}{10 k_B T} \sum_{\kappa \lambda = x, y, z} Q_{\kappa \lambda} \int_0^\infty \langle P_{\kappa \lambda}(t) P_{\kappa \lambda}(0) \rangle dt
$$

V = volume T = temperature k_B = Boltzmann constant

 \sum =double sum over cartesian coordinates $Q_{\kappa\lambda}$ =weight factor $\kappa, \lambda = x, y, z$

 $P_{\kappa\lambda}(t)$ =symmetrized traceless portion of stress tensor at time t

● **TRANSPORT PROPERTIES : SHEAR VISCOSITY**

- Implementation :

$$
\eta = \lim_{t \to \infty} \eta(t) \text{ where } \eta(t) = \frac{V\Delta t}{10k_B T n N_{or}} \sum_{i=1}^{N_{or}} \left\{ \frac{2}{3} \sum_{\kappa} \left[J_{\kappa\kappa}(t; t_i) \right]^2 + \sum_{\kappa} \sum_{\lambda > \kappa} \left[J_{\kappa\lambda}(t; t_i) \right]^2 \right\}
$$

 N_{tot} =total number of discrete times

 $N_{or} = \frac{N_{tot}}{2}$ =number of time origins Δt =time step

Discrete times $t_i = t_0 + (i - 1)\Delta t$ where $i = 1, ..., N_{tot}$

Elapsed time $t = n\Delta t$ where $n = 1, ..., N_{or}$

Trapezoidal rule:

$$
J_{\kappa\lambda}(t;t_i) = \frac{1}{2}P_{\kappa\lambda}(t_i) + P_{\kappa\lambda}(t_i + \Delta t) + P_{\kappa\lambda}(t_i + 2\Delta t) + \ldots + P_{\kappa\lambda}(t_i + (n-1)\Delta t) + \frac{1}{2}P_{\kappa\lambda}(t_i + n\Delta t)
$$

Simpson's rule:

$$
J_{\kappa\lambda}(t; t_i) = \frac{1}{3} P_{\kappa\lambda}(t_i) + \frac{4}{3} P_{\kappa\lambda}(t_i + \Delta t) + \frac{2}{3} P_{\kappa\lambda}(t_i + 2\Delta t) + \frac{4}{3} P_{\kappa\lambda}(t_i + 3\Delta t) + \dots
$$

+
$$
\frac{2}{3} P_{\kappa\lambda}(t_i + (n-2)\Delta t) + \frac{4}{3} P_{\kappa\lambda}(t_i + (n-1)\Delta t) + \frac{1}{3} P_{\kappa\lambda}(t_i + n\Delta t)
$$

● **TRANSPORT PROPERTIES : SHEAR VISCOSITY**

- Because stress tensor is a strong oscillation function with respect to elapsed time, time integrals of this function doesn't convergence from numerical integration algorithms (i.e., Trapezoidal and Simpson's rules).
- Experimental results have been obtained at MUNSTER University.
- Arrhenius model:

$$
ln \eta(T) = ln \eta_0 + \frac{E_a}{K_b T}
$$

● **TRANSPORT PROPERTIES : SHEAR VISCOSITY**

0.10LiTFSI-0.90PYR14TFSI 0.10LiFSI-0.90PYR14FSI

● **TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS**

- Definition:

$$
D_{\alpha} = \lim_{t \to \infty} \frac{1}{6t} \langle \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \left[\vec{r_i}(t) - \vec{r_i}(0) \right]^2 \rangle
$$

 $\vec{r}_i(t)$ =cartesian vector position for i-molecule belong to α -type molecule at time t

- Implementation:

$$
D_\alpha = \lim_{t\to\infty} D_\alpha(t) \text{ where } D_\alpha(t) = \frac{1}{6t}\frac{1}{N_\alpha N_{or}}\sum_{i=1}^{N_\alpha}\sum_{j=1}^{N_{or}}\left[\vec{r}_i(t_j+t)-\vec{r}_i(t_j)\right]^2
$$

- Finite size correction*10*:

 $\Delta D = \frac{2.837 k_B T}{6 \pi \eta L}$ L =linear dimension of simulation periodic cell

*10*B. Dunweg and K. Kremer, *J. Chem. Phys.* **99**, 6983-6997 (1993)

● **TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS**

Li⁺ has the smallest diffusion constant: Li⁺ ions move surrounded by their anion shell

● **TRANSPORT PROPERTIES : SELF-DIFFUSION CONSTANTS**

- The diffusion constants were obtained from mean-square displacement by fitting a straight line.

TABLE 3. Self-diffusion constants (D) for $0.10LiTFSI$ - $0.90PYR_{14}TFSI$. Finite Size Correction (ΔD^{FSC}) is also included. Units are $10^{-10} m^2/s$.

TABLE 3. Self-diffusion constants (D) for $0.10LiFSI$ – $0.90PYR_{14}FSI$. Finite Size Correction (ΔD^{FSC}) is also included. Units are $10^{-10} m^2/s$.

● **TRANSPORT PROPERTIES : IONIC CONDUCTIVITY**

- Definition:

Charge transport due to self-diffusion:

$$
\lambda_{uncorr} = \frac{1}{V k_B T} \lim_{t \to \infty} \frac{1}{6t} \langle \frac{1}{N} \sum_{\alpha=1}^{N_{type}} \sum_{i=1}^{N_{\alpha}} q_{\alpha}^2 \left[\vec{r}_i(t) - \vec{r}_i(0) \right]^2 \rangle
$$

 q_{α} =charge of α -type molecule

Total charge transport :

$$
\lambda = \frac{1}{V k_B T} \lim_{t \to \infty} \frac{1}{6t} \langle \frac{1}{N} \left\{ \sum_{\alpha=1}^{N_{type}} \sum_{i=1}^{N_{\alpha}} q_{\alpha} \left[\vec{r}_i(t) - \vec{r}_i(0) \right] \cdot \sum_{\beta=1}^{N_{type}} \sum_{j=1}^{N_{\beta}} q_{\beta} \left[\vec{r}_j(t) - \vec{r}_j(0) \right] \right\} \rangle
$$

● **TRANSPORT PROPERTIES : IONIC CONDUCTIVITY**

- Implementation:

Charge transport due to self-diffusion:

$$
\lambda_{uncorr} = \lim_{t \to \infty} \lambda_{uncorr}(t) \quad \text{where } \quad \lambda_{uncorr}(t) = \frac{1}{N V k_B T} \sum_{\alpha=1}^{N_{type}} q_{\alpha}^2 N_{\alpha} D_{\alpha}(t)
$$

Total charge transport :

$$
\boxed{\lambda = \lim_{t \to \infty} \lambda(t) \text{ where } } \lambda(t) = \frac{1}{6tVk_BTNN_{or}} \sum_{\alpha=1}^{N_{type}} q_{\alpha} \sum_{\beta=1}^{N_{type}} q_{\beta} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\alpha}} \sum_{k=1}^{N_{or}} \left[\vec{r}_i(t_k + t) - \vec{r}_i(t_k) \right] \cdot \left[\vec{r}_j(t_k + t) - \vec{r}_j(t_k) \right]}
$$

● **TRANSPORT PROPERTIES : IONIC CONDUCTIVITY**

- Ionic conductivity can be estimated from charge transport due to self-diffusion and degree of uncorrelated ion motion.

$$
\gamma_d(t) = \frac{\lambda(t)}{\lambda_{uncorr}(t)}
$$

TABLE 4. Degree of uncorrelated ion motion (α_d) for $0.10LiTFSI 0.90PYR_{14}TFSI$. Average obtained up to times 5% (2%) of the total simulation run.

config.	method	α_d
	one step	0.56(0.55)
	two steps	0.59(0.53)
9	one step	0.59(0.54)
	two steps	0.55(0.55)
3	one step	0.60(0.53)
3	two steps	0.58(0.54)

 $<\lambda_{\text{uncorr}}>=12.88\,\text{mS/cm}$ $< \lambda > = 7.47(6.96) mS/cm$

TABLE 4. Degree of uncorrelated ion motion (α_d) for $0.10LiFSI$ – $0.90PYR_{14}FSI$. Average obtained up to times 5% (2%) of the total simulation run

config.	method	α_d
	one step	0.60(0.55)
	two steps	0.63(0.58)
9	one step	$\overline{0.87}$ (0.69)
	two steps	0.67(0.60)
3	one step	0.67(0.58)

$$
\langle \lambda_{uncorr} \rangle = 16.63 \, mS/cm
$$

$$
\langle \lambda \rangle = 11.47 (9.98) \, mS/cm
$$

● **SUMMARY ON THE TRANSPORT ANALYSIS**

- **FSC is an important contribution for self-diffusion constants**.
- **Li⁺diffusion constant : 0.10LiFSI-0.90PYR14FSI > 0.10LiTFSI-0.90PYR14TFSI.**
- **Ionic conductivity : 0.10LiFSI-0.90PYR14FSI > 0.10LiTFSI-0.90PYR14TFSI.**

● **MECHANISM OF THE Li⁺ CATION TRANSPORT**

- In principle, there are two possible mechanisms of the Li⁺ transport:
	- * **Vehicular mechanism** \Box Li⁺ cations move primarily with their coordination shells as $Li[(T)FSI]_4$ complex.
 sm $\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ Li+ cations move primarily by * Structure-diffusion mechanism exchanging (T)FSI⁻ molecules in their first coordination shell.
- One way to quantify the contribution of the vehicular mechanism to the Li⁺ transport is to calculate the lifetime of the $Li[(T)FSI]_4$ coordinations and how far the $Li[(T)FSI]_4$ complex moves before Li⁺ exchanges (T)FSI⁻ anions in its first coordination shell.

● **MECHANISM OF THE Li⁺ CATION TRANSPORT**

- **Lifetime correlation function**:

* Definition

$$
P_{Li-(T)FSI}(t) = \frac{\langle \frac{1}{N_{Li}N_{(T)FSI}} \sum_{i=1}^{N_{Li}} \sum_{j=1}^{N_{(T)FSI}} H_{ij}(t)H_{ij}(0) \rangle}{\langle \frac{1}{N_{Li}N_{(T)FSI}} \sum_{i=1}^{N_{Li}} \sum_{j=1}^{N_{(T)FSI}} H_{ij}(0) \rangle}
$$

\n
$$
H_{ij}(t) = 1 \Leftrightarrow \left| \vec{r}_{i}^{Li}(t) - \vec{r}_{j}^{(T)FSI}(t) \right| \leq 5.6\text{\AA}
$$

\n
$$
H_{ij}(t) = 0 \text{ otherwise}
$$

● **MECHANISM OF THE Li⁺ CATION TRANSPORT**

- **Lifetime correlation function**:
	- * Implementation

$$
P_{Li-(T)FSI}(t) = \frac{\sum_{k=1}^{N_{or}} \sum_{i=1}^{N_{Li}} \sum_{j=1}^{N_{(T)FSI}} H_{ij}(t_k+t) H_{ij}(t_k)}{\sum_{k=1}^{N_{or}} \sum_{i=1}^{N_{Li}} \sum_{j=1}^{N_{(T)FSI}} H_{ij}(t_k)}
$$

- **Residence time for lifetime correlation function (Rt):**

$$
ln\left[P_{Li-(T)FSI}(t)\right]=-\frac{t}{Rt}
$$

● **MECHANISM OF THE Li⁺ CATION TRANSPORT**

- **Residence time for lifetime correlation function (Rt):**

● **MECHANISM OF THE Li⁺ CATION TRANSPORT**

- **Residence time for lifetime correlation function (Rt):**

TABLE 5. Residence time (Rt) of $Li(TFSI)_4$ complex for $0.10LiTFSI - 0.90PYR_{14}TFSI$. Units are ns.

TABLE 5. Residence time (Rt) of $Li(FSI)₄$ complex for $0.10LiFSI - 0.90PYR₁₄FSI$. Units are *ns*.

config.	method	Rt.
	one step	2.06
	two steps	1.68
2	one step	1.82
2	two steps	1.75
ર	one step	1.67

- **Radius of gyration (Rg):**

* Rg allows to estimate the size of a molecule and it can be obtained from MD simulations.

 $\langle Rg(TFSI)\rangle = 2.60$ Angs. $\langle Rg(FSI)\rangle = 2.00$ Angs.

● **MECHANISM OF THE Li⁺ CATION TRANSPORT**

- **Using self-diffusion coefficient data and residence times, we estimate that an Li⁺ cation on average moves a distance of 1.39 (1.74) FSI- (TFSI-) diameters (diameter is defined as two radii of gyration) before it exchanges a (T)FSI anion in its first coordination shell. These numbers suggest that there is a significant contribution to the Li⁺ transport mechanism from the structure diffusion in which Li⁺ cations move by exchanging (T)FSI- anions.**
- These results are in agreement to previous results for similar ILs mixtures¹⁰.

THANK YOU FOR YOUR ATTENTION!