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Motivation: E. Coli as an example

Escherichia coli:
Gram-negative bacteria
Two membranes protecting
the interior



Motivation: E. Coli as an example

Outer membrane porins:
Porins allow the permeation
of ions and hydrophilic
compounds
The structure of some porins
has been determined
experimentally
Electrostatic interactions play
a key role in the permeation
process



Outline

1 Motivation

2 Introduction
Electric field
Gauss’s law
Electric potential
Poisson’s equation

3 Numerical solution of Poisson’s equation
Boundary conditions
Finite-difference method: discretization in 2D
Finite-difference method: discretization in 3D
Approaches to solve the system of linear equations
Relaxation methods
Random walk solution



Electric field: definition

An electric field is a vector
field that associates to each
point in space the Coulomb
force that would be
experienced by a test charge
at that point
The electric field at the point r
due to a static charge q1 at
the point r1 is given by:

E(r) = kq1
(r− r1)

|r− r1|3

where k is a constant of
proportionality



Electric field: units

The constant of proportionality k depends on the system of units
used:

SI units (mks units)

k =
1

4πε0

where ε0 = 8.854× 10−12 C2kg−1m−3s2 is permittivity of free
space

Unit of charge is called Coulomb: 1 C = 1 As−1

k ≈ 9.0× 109C−2kgm3s−2

This choice of units is not convenient for computer programs

Gaussian units (cgs units)

k = 1

Unit of charge is called Stat-Coulomb: 1 statC = 1 g1/2cm3/2s−1

The electric and magnetic field have the same dimension
This choice of units is convenient for computer programs



Electric field: superposition principle

The electric field at r due to a
system of static point charges
{q1, . . . ,qn}, located at ri with
i = 1, . . . ,n, can be written as the
vector sum (parallelogram law)

E(r) =
n∑

i=1

Ei(r) = k
n∑

i=1

qi
(r− ri)

|r− ri |3

Electric field at r due to a
continuous charge distribution:

E(r) = k
∫

dr′ρ(r′)
(r− r′)
|r− r′|3

dr′ = dx ′dy ′dz ′ is the
three-dimensional volume
element at r′

ρ(r′) = ∆q
∆x∆y∆z is the charge

density, where ∆q is the
charge in a small volume
∆x∆y∆z at r′



Electric field: electric field lines

Directed lines whose tangent at every position is parallel to the
electric field
The density of lines at any location is proportional to the
magnitude of the electric field at that point
The electric field lines start at positive charges and end at
negative charges



Gauss’s law: integral form (Gaussian units)

Case 1: Spherical surface enclosing a single static point charge

∮
S

E · n da =
q
r2

∮
S

da =
q
r2 (4πr2) = 4πq

where
∮

S is an integral over a closed surface S and E = qr/r3 (point
charge q is located at the origin of coordinates)



Gauss’s law: integral form (Gaussian units)

Case 2: Irregular surface enclosing a single static point charge

∮
S1

E · n da =

∮
S2

E · n da = 4πq

The same number of field lines pass through surface S1 as
surface S2



Gauss’s law: integral form (Gaussian units)

Case 3: Many static charges in
some region of space∮

S
E · n da =

∑
i

∮
S

Ei · n da

= 4π
∑

i

qi

where we use the superposition
principle (first equality) and
Gauss’s law for each single
static point charge (second
equality)

Case 4: Gauss’s law in terms of
the charge density∮

S
E · n da = 4π

∫
V
ρ(r)dr

where V is the volume enclosed
by the surface S



Gauss’s law: differential form (Gaussian units)

Divergence theorem:∮
S

E · n da =

∫
V
∇ · E dr

where ∇ · E = ∂Ex
∂x +

∂Ey
∂y + ∂Ez

∂z is the divergence of the electric
field (cartesian coordinates)
Gauss’s law: (previous slide)∮

S
E · n da = 4π

∫
V
ρ(r)dr

Combining both: ∫
V

[∇ · E(r)− 4πρ(r)] dr = 0

which implies

∇ · E(r) = 4πρ(r)



Electric potential: definition

Electric field (a vector) is derived
from a scalar (i.e., electric
potential) by the gradient operation

E(r) = −∇V (r)

E(r) = −∂V (r)

∂x
ux −

∂V (r)

∂y
uy

−∂V (r)

∂z
uz

where ux , uy and uz are unit
vectors in the x , y and z directions

Proof:

E(r) = k
∫

dr′ρ(r′)
(r− r′)
|r− r′|3

= −∇k
∫

dr′
ρ(r′)
|r− r′|

= −∇V (r)

where

V (r) = k
∫

dr′
ρ(r′)
|r− r′|

is the electric potential and we
use the relation

(r− r′)
|r− r′|3

= −∇
(

1
|r− r′|

)



Electric potential: physical interpretation
The work done on test charge q in
transporting it from one point A to
another point B in the presence of
an electric field E(r) is given by

W = −
∫ B

A
F · d l

= −q
∫ B

A
E · d l

= q
∫ B

A
∇V · d l

= q
∫ B

A
dV = q(VB − VA)

qV can be interpreted as the
potential energy of the test
charge in the electric field



Electric potential: equipotential lines

Equipotential lines are like contour lines on a map which trace
lines of equal electric potential
They are always perpendicular to the electric field
In 3D, the lines form equipotential surfaces
Movement along an equipotential surface requires no work
because such movement is always perpendicular to the electric
field



Poisson’s and Laplace’s equations

We have seen that the Gauss’s law implies that ∇ · E(r) = 4πρ(r)

We have seen that E can be written as the gradient of V , i.e.,
E(r) = −∇V (r)

Combining both we get a partial differential equation of elliptic
type:

∇2V (r) =
∂2V (x , y , z)

∂x2 +
∂2V (x , y , z)

∂y2 +
∂2V (x , y , z)

∂z2 = −4πρ(x , y , z)

which is known as Poisson’s equation
In regions of space where there is no charge density, we get the
Laplace’s equation ∇2V (r) = 0
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Poisson’s equation: goal and boundary conditions

Partial differential equation on some domain
Ω = [xmin, xmax ]× [ymin, ymax ]× [zmin, zmax ]:

∂2V (x , y , z)

∂x2 +
∂2V (x , y , z)

∂y2 +
∂2V (x , y , z)

∂z2 = −4πρ(x , y , z)

Goal: Determine V (x , y , z) for (x , y , z) ∈ Ω using numerical
methods
Boundary value problem: Poisson’s equation is an ill-posed
problem and, therefore, boundary conditions (BC) are
required:

Dirichlet BC. Specification of V values on a closed boundary
surface
Neumann BC. Specification of E = −∇V values on a closed
boundary surface
Periodic BC. V (xmin, y , z) = V (xmax , y , z),
V (x , ymin, z) = V (x , ymax , z) and V (x , y , zmin) = V (x , y , zmax )



Finite-difference method: discretization in 2D

Poisson’s equation (Gaussian units):

∂2V (x , y , z)

∂x2 +
∂2V (x , y , z)

∂y2 = −4πρ(x , y)

We define a mesh grid covering the region of interest
Ω = [x0, xI ]× [y0, yJ ]:

xi = x0 + ih, i = 0, . . . , I
yi = y0 + jh, j = 0, . . . , J

For convenience, we take the grid spacing h to be uniform and
equal in both directions



Finite-difference method: discretization in 2D

Taylor expansion:



Finite-difference method: discretization in 2D

For simplicity, we use the notation Vi,j ≡ V (xi , yj) and
ρi,j ≡ ρ(xi , yj):

Vi+1,j + Vi−1,j − 2Vi,j

h2 +
Vi,j+1 + Vi,j−1 − 2Vi,j

h2 = −4πρi,j

Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j = −4πh2ρi,j

This equation holds only at the interior points, which satisfy:

i = 1, . . . , I − 1
j = 1, . . . , J − 1

V or its derivative should be specified at the boundary points,
which satisfy:

i = 0, I
j = 0, J



Finite-difference method: discretization in 2D

System of linear equations (Gaussian units):

Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j = −4πh2ρi,j

Each grid point is connected to 4 nearest neighbors:



Finite-difference method: discretization in 2D

System of linear equations (Gaussian units):

Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j = −4πh2ρi,j

To write the system of linear equations in matrix form we need to
make a vector out of V . Let us number the two dimensions of grid
points in a single one-dimensional sequence by defining
n ≡ i(J + 1) + j for i = 0, . . . , I and j = 0, . . . , J. Thus, the linear
equations can be rewritten as:

Vn+J+1 + Vn−(J+1) + Vn+1 + Vn−1 − 4Vn = −4πh2ρn



Finite-difference method: discretization in 2D

Example: I = 3, J = 4, Dirichlet BC



Finite-difference method: discretization in 2D

Example: I = 3, J = 4, Dirichlet BC



Finite-difference method: discretization in 2D

Example: I = 3, J = 4, Dirichlet BC



Finite-difference method: discretization in 3D

Poisson’s equation (Gaussian units):

∂2V (x , y , z)

∂x2 +
∂2V (x , y , z)

∂y2 +
∂2V (x , y , z)

∂z2 = −4πρ(x , y , z)

We define a mesh grid covering the region of interest
Ω = [x0, xI ]× [y0, yJ ]× [z0, zK ]:

xi = x0 + ih, i = 0, . . . , I
yi = y0 + jh, j = 0, . . . , J
zi = z0 + kh, k = 0, . . . ,K

Discretization:

Vi+1,j,k + Vi−1,j,k + Vi,j+1,k + Vi,j−1,k

+Vi,j,k+1 + Vi,j,k−1 − 6Vi,j,k = −4πh2ρi,j,k

where Vi,j,k ≡ V (xi , yj , zk ) and ρi,j,k = ρ(xi , yj , zk )



Finite-difference method: discretization in 3D



Finite-difference method: discretization in 3D

Matrix form:

Vn+J(K +1)+1 + Vn−[J(K +1)+1] + Vn+K +1 + Vn−(K +1)

+Vn+1 + Vn−1 − 6Vn = −4πh2ρn

or, equivalently,

Ax = b

where n ≡ i(J + 1)(K + 1) + j(K + 1) + k for i = 0, . . . , I,
j = 0, . . . , J and k = 0, . . . ,K



Approaches to solve the system of linear equations

1 Direct matrix methods:
Attempt to solve the equation directly
It is not applicable for large grids

2 Relaxation methods:
Because most of the elements of A vanish (it is sparse), one can
use efficient iterative techniques

3 Random walk solutions:
Applied to find a local solution (i.e., at a given interior point)



Relaxation methods: Jacobi’s iterative method

We rewrite the Poisson’s equation as a diffusion equation:

∂V (r, t)
∂t

= ∇2V (r, t) + 4πρ(r) = 0

An initial distribution V relaxes to an equilibrium solution as
t →∞
This equilibrium has all time derivatives vanishing and, thus, it is
the solution of the original Poisson’s equation



Relaxation methods: Jacobi’s iterative method

Finite-difference method (2D):
tn = t0 + n∆t , where n = 0, . . . ,T and ∆t is the timestep
Taylor expansions:

V (xi , yj , tn + ∆t) = V (xi , yj , tn) + ∆t
∂V (xi , yj , tn)

∂t
+ O(∆t2)

∂2V (xi , yj , tn)

∂x2 =
V (xi + h, yj , tn) + V (xi − h, yj , tn)− 2V (xi , yj , tn)

h2 + O(h2)

∂2V (xi , yj , tn)

∂y2 =
V (xi , yj + h, tn) + V (xi , yj − h, tn)− 2V (xi , yj , tn)

h2 + O(h2)

If ∆t and h are small:
∂V (xi , yj , tn)

∂t
≈ V (xi , yj , tn + ∆t)− V (xi , yj , tn)

∆t
∂2V (xi , yj , tn)

∂x2 ≈ V (xi + h, yj , tn) + V (xi − h, yj , tn)− 2V (xi , yj , tn)

h2

∂2V (xi , yj , tn)

∂y2 ≈ V (xi , yj + h, tn) + V (xi , yj − h, tn)− 2V (xi , yj , tn)

h2



Relaxation methods: Jacobi’s iterative method

Finite-difference method (2D):
For simplicity, we use the notation V n

i,j = V (xi , yj , tn) and
ρi,j = ρ(xi , yj):

V n+1
i,j = V n

i,j+
∆t
h2

(
V n

i+1,j + V n
i−1,j + V n

i,j+1 + V n
i,j−1 − 4V n

i,j + 4πh2ρi,j

)
The differencing is stable only if ∆t

h2 ≤ 1
4 . If we take the largest

possible time step ∆t = h2

4 :

V n+1
i,j =

1
4

(
V n

i+1,j + V n
i−1,j + V n

i,j+1 + V n
i,j−1 + 4πh2ρi,j

)



Relaxation methods: Jacobi’s iterative method

V n+1
i,j =

1
4

(
V n

i+1,j + V n
i−1,j + V n

i,j+1 + V n
i,j−1 + 4πh2ρi,j

)
Algorithm:

Step 1: Initial values (guess) V 0
i,j

Step 2: Calculate V n+1
i,j for iteration n + 1, where n = 0,1, . . .

Repeat Step 2 until convergence. Convergence criteria: there
is not significant change in the electric potential from one to next
iteration

Jacobi’s method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which
are always compared with it



Relaxation methods: Gauss-Seidel method

Modification of Jacobi’s method which converges a little faster
If we are proceeding along the arrows, incrementing i for fixed j ,
we have for the n + 1 iteration:

V n+1
i,j =

1
4

(
V n

i+1,j + V n+1
i−1,j + V n

i,j+1 + V n+1
i,j−1 + 4πh2ρi,j

)

where V n+1
i−1,j and V n+1

i,j−1 are neighbors already updated
The average is done in place instead of being copied from an
earlier iteration to a later one. Thus, the most current values of
electric potential are use in each iteration



Relaxation methods: sucessive overrelaxation method

If we are proceeding along the arrows, incrementing i for fixed j ,
we have for the n + 1 iteration:

V n+1
i,j = (1− ω)V n

i,j +
ω

4

(
V n

i+1,j + V n+1
i−1,j + V n

i,j+1 + V n+1
i,j−1 + 4πh2ρi,j

)

where the relaxation parameter ω can be tuned to optimize the
convergence (overrelaxation means ω > 1, underrelaxation
means ω < 1)
The following theorems can be proved:

The method converges only for 0 < ω < 2
Under certain restrictions generally satisfied by matrices arising
from finite differencing, only overrelaxation (1 < ω < 2) can give
faster convergence than the Gauss-Seidel method
The optimal choice for ω on l × l square grid is given by ω ' 2

1+ π
l



Relaxation methods: convergence estimation

For a l × l squared grid with Dirichlet BC, the number of
iterations r required to reduce the overall error by a factor 10−p

is:
Jacobi’s iterative method: r ≈ pl2/2
Gauss-Seidel method: r ≈ pl2/4
Successive overrelaxation method: r ≈ pl/ω for optimal ω

Example: 50× 50 squared grid with Dirichlet BC, r required to
reduce the overall error by a factor 10−3 is:

Jacobi’s iterative method: r ≈ 3750
Gauss-Seidel method: r ≈ 1875
Successive overrelaxation method: r ≈ 50



Random walk solution: definition and discrete random
walkers

Relaxation method
Global method. A global solution of the electric potential is
obtained by solving a system of linear equations

Random walk solution
Local method. The electric potential is calculated only at a
desired single point
It can be applied with Dirichlet and Neumann BC

A discrete random walker at a point (xi , yj) (or (xi , yj , zk )) is
able to jump to one of its 4 (or 6) nearest neighbors with equal
probability p = 1/4 (or p = 1/6)



Random walk solution: algorithm
Algorithm (2D and Dirichlet BC):

1 Begin with a discrete walker at desired point
(xi , yj)

2 Take steps until walker reaches a boundary
point

3 Record the electric potential at the
boundary point Vb(α) and the charge
density visited by the walker ρ(xkα, ykα),
where α labels the walker and k labels the
points visited by the walker α

4 Repeat steps 1, 2 and 3 n times
5 The electric potential at desired point (xi , yj)

is given by

V (xi , yj ) =
1
n

n∑
α=1

Vb(α) +
πh2

n

n∑
α=1

∑
k

ρ(xkα, ykα)



Random walk solution: limitations

Main disadvantage: Random walk solution requires many walkers to
obtain a good estimate of the electric potential
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