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Computational methods for studying substrate
translocation

Molecular Dynamics (MD) +
enhanced sampling methods

Translocation is still out of reach of direct
investigation using MD trajectories

Enhance the sampling of a few crucial
collective variables whose fluctuations
are critical for the translocation by the
introduction of a bias potential

Brownian Dynamics (BD)
Dimensionality of the configurational
space is reduced by projecting out the
uninteresting degrees of freedom
(solvent molecules)

Environment is represented by a
structureless dielectric medium
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Main goal and general features

Develop a fast and efficient software solution which enables us to study
ion permeation and substrate translocation across a nanopore, i.e.,
artificial or biological channel, embedded in a bilayer membrane and
surrounded by aqueous salt solutions
System is divided into implicit and explicit or brownian particles
The evolution for the cartesian coordinates of N brownian particles
rN = {r1, . . . , r3N} is treated on a coarse time scale as a Markov
process
Implicit particles are described as a continuum dielectric (i.e., water
molecules) or remained at fixed positions (i.e., implicit pore and
membrane atoms)



Langevin equation and many-body PMF

Smoluchowski equation(
∂

∂t
− Ôr

)
ρ(rN , t | rN

0 ,0) = 0

ρ(rN , t | rN
0 , 0) is the conditional space probability distribution that the brownian

particles adopt a configuration rN ≡ rN(t) at time t given the initial configuration
rN
0 ≡ rN(0) at time t = 0

The Smoluchowski operator Ôr =
∑3N

i
∂
∂ri

Di

(
∂
∂ri
− βri

)
acts on the variables rN ,

where β is the inverse of thermal energy and Di is the self-diffusion constant of the
brownian particle associated with index i
Analogue of the Liouville equation in the all-atom description

Langevin equation

dri

dt
=

[
βDi (rN)fi (rN) +

∂

∂ri
Di (rN)

]
+
√

2Di (rN)ηi (t)

fi = − ∂
∂ri

W (rN) is the force acting in direction i and W (rN) is the many-body PMF
ηi is a gaussian white noise process



Langevin equation and many-body PMF

Many-body PMF

W (rN) =
∑

bonds

Kb(b − b0)2 +
∑

angles

Kθ(θ − θ0)2 +
∑

Urey−Bradley

KS(S − S0)2

+
∑

dihedrals

Kϕ(1 + cos (nϕ− δ)) +
∑

impropers

Kω(ω − ω0)2

+
∑

residues

UCMAP +
N∑
α

{
qα

[
φsf (rα) +

φrf (rα)

2

]
+ Ucore(rα)

}

+
N∑

β>α

4εαβ

[(
σαβ
rαβ

)12

−
(
σαβ
rαβ

)6
]

+ wsr (rαβ) +
qαqβ

4πε0ε(rαβ)rαβ
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Nonbonded list

BRODEA use finite cutoffs to reduce the number of nonbonded
interactions
The calculation to determine which particle pairs fall within the
cutoff distance can be time-consuming
Verlet idea: reduce the frequency of this calculation by extending
the spherical cutoff region about each particle with an additional
volume shell
Between consecutive BD steps particle positions do not change
drastically. Therefore, the same nonbonded list can be used for
several BD steps



Numerical integration of Langevin equations

Euler-Maruyama method

ri (t + ∆t) = ri (t) + βDi (rN(t))fi (rN(t))∆t +
∂Di (rN(t))

∂ri
∆t

+
√

2Di (rN(t))∆tZ (t)

where ∆t is the time step and Z (t) is a standard normal random
variable
Milstein method

ri (t + ∆t) = ri (t) + βDi (rN(t))fi (rN(t))∆t +
1
2
∂Di (rN(t))

∂ri
∆t
[
(Z (t))2 + 1

]
+
√

2Di (rN(t))∆tZ (t)



Numerical integration of Langevin equations

Predictor-corrector method
Predictor step

r̃i (t + ∆t) = ri (t) + βDi (rN(t))fi (rN(t))∆t +
∂Di (rN(t))

ri
∆t

+
√

2Di (rN(t))∆tZ (t)

Corrector step

ri (t + ∆t) = ri (t)

+
β

2

[
Di (rN(t))fi (rN(t)) + Di (r̃

N
(t + ∆t))fi (r̃

N
(t + ∆t))

]
∆t

+
1
4

[
∂

∂ri
Di (rN(t)) +

∂

∂ri
Di (r̃

N
(t + ∆t))

]
∆t

+

√
2Di (rN(t))∆t +

√
2Di (r̃

N
(t + ∆t))∆t

2
Z (t)



Constraints and constant electric field approach

Holonomic bond distance constraints
SHAKE algorithm
LINCS algorithm (easily parallelizable)

Harmonic restraints on selected atoms or Cα atoms
Constant external electric field

A simple approach to implement a transmembrane potential
A constant electric field E is applied along the channel axis
E drives a voltage difference over the whole system V = EL,
where L is the length of the simulation box along the channel axis



Boundary conditions

Grand canonical Monte Carlo (GCMC) algorithm
GCMC allows fluctuations in the number of ions
Particle creation and destruction is accepted based on the energy
of the system and the chemical potential of the ion species
Unphysical creation and destruction is restricted to control cells
(CCs) defined in the boundaries of the simulation box
Time consuming

Periodic boundary conditions (PBCs)
PBCs are conceptually simpler, involve less calculations, and are
considerably faster at moderate and high ion concentrations
The size of the system has to be adjusted to contain an integer
number of ions
PBCs allows for only modeling symmetric solutions at each side
of the channel

Particle counting (PACO) algorithm
Ions are inserted into and deleted from the CCs only when need
PACO needs only ion counting inside the CCs without the
computationally expensive energy calculation



Simulations schemes

Table : Simulations schemes available in BRODEA code where system
boundaries and the methods for estimating the static field φsf are
highlighted. Key: eq: equilibrium, noneq: nonequilibirum; P: Poisson
equation, PB-V: modified Poisson-Boltzmann equation including
transmembrane potential, Efiled: constant electric field

Scheme Condition System boundaries Static field
eGCMC/BD eq GCMC PB
GCMC/BD noneq GCMC PB-V

eBD eq PBCs P
BD noneq PBCs P + Efield

ePACO/BD eq PACO P
PACO/BD noneq PACO P + Efield
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Ion permeation across OmpC pore

Figure : (A) Surface representation of the OmpC trimer (PDB ID: 2J1N) from E. coli with each monomer formed by 16
β-strands. (B) An OmpC monomer is shown with the L3 loop in yellow leading to a narrow pore together with important
negatively charged residues (D105, E109 and D113) shown as sticks. (C) Positively charged residues (K16, R37, R74 and
R124) located on the barrel wall, opposite to L3 loop, are shown as sticks

Residues from 104 to 114 in the L3 loop (including negatively charged
D105, E109 and D113) undergo thermal fluctuations
Positively charged residues K16, R37, R74 and R124 also undergo
thermal fluctuations



Ion permeation across OmpC pore

Table : Average number of ions in the channel N and average conductance
G for 0.3 M KCl at 0.1 V transmembrane potential and 300 K. Simulation
time is 100 ns for each independent run

SCHEME BD PROP. CONSTR. NK+ NCl− G [nS] CPU TIME [hours]
GCMC/BD (old) EM SHAKE 7.68±0.20 1.33±0.20 0.73±0.21 155.59±3.86

GCMC/BD EM SHAKE 7.51±0.15 1.28±0.15 0.70±0.27 34.21±0.47
GCMC/BD EM LINCS 7.75±0.34 1.42±0.30 0.81±0.17 33.62±0.17

BD EM SHAKE 7.42±0.47 0.91±0.46 0.63±0.26 24.18±0.25
BD EM LINCS 7.63±0.45 1.08±0.46 0.72±0.20 24.00±0.20

PACO/BD EM SHAKE 7.93±0.42 1.50±0.46 0.78±0.26 47.68±0.54
PACO/BD EM LINCS 7.75±0.42 1.37±0.37 0.68±0.25 52.83±3.55
GCMC/BD MLS SHAKE 7.42±0.25 1.14±0.22 0.66±0.17 33.90±0.79
GCMC/BD MLS LINCS 7.56±0.29 1.35±0.33 0.61±0.19 33.98±0.78

BD MLS SHAKE 7.77±0.33 1.29±0.41 0.69±0.21 24.17±0.23
BD MLS LINCS 7.70±0.44 1.24±0.39 0.68±0.21 24.04±0.16

PACO/BD MLS SHAKE 7.58±0.47 1.25±0.46 0.62±0.19 47.71±0.51
PACO/BD MLS LINCS 7.73±0.41 1.32±0.49 0.73±0.29 47.97±0.76

GCMC/BD (old) PC SHAKE 6.59±0.20 0.79±0.23 0.63±0.14 154.88±1.18
GCMC/BD PC SHAKE 7.53±0.38 1.41±0.38 0.60±0.14 52.81±0.44
GCMC/BD PC LINCS 7.51±0.26 1.31±0.33 0.69±0.19 53.00±0.65

BD PC SHAKE 7.81±0.43 1.38±0.42 0.79±0.23 42.96±0.28
BD PC LINCS 7.61±0.40 1.11±0.44 0.62±0.27 43.92±0.74

PACO/BD PC SHAKE 7.64±0.61 1.33±0.66 0.67±0.23 69.66±0.92
PACO/BD PC LINCS 7.82±0.36 1.49±0.37 0.71±0.22 68.74±0.64

applied-field MD 5.95±1.64 1.87±1.06
Experiment [3] ∼0.41

[3] I. Biro et al, Biophys. J. 97, 1898 (2009)



Ion permeation across OmpC pore

Figure : 1D multi-ion average PMF for 0.3 M KCl solution under equilibrium conditions (i.e., zero transmembrane
potential) and 300 K. The results for the K+ ions are represented in red while the Cl− ions are in green. A different line type is
used for each different scheme
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Future work

Apply BRODEA for ion permeation using a more realistic OmpC
representation and compare with MD results
Implement an alternative protocol in which all interactions are treated
at the forces field level
Apply BRODEA for antibiotic translocation
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